Topics in the June 2014 Exam Paper for CHEM1611

Click on the links for resources on each topic.

2014-J-2:

- Atomic Structure
- The Periodic Table

2014-J-3:

- Chemical Bonding
- The Shapes of Molecules

2014-J-4:

Chemical Bonding

2014-J-5:

- Alkenes
- Aldehydes and Ketones
- Alcohols, Phenols, Ethers and Thiols
- Carboxylic Acids and Derivatives

2014-J-6:

Stereochemistry

2014-J-7:

- Aromatic Hydrocarbons
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives
- Alkenes
- Alcohols, Phenols, Ethers and Thiols

2014-J-8:

Carbohydrates

2014-J-9:

• Amino Acids, Peptides and Proteins

2014-J-10:

• Amino Acids, Peptides and Proteins

2014-J-11:

• DNA and Nucleic Acids

2216(a)

THE UNIVERSITY OF SYDNEY

CHEM1611 - CHEMISTRY 1A (PHARMACY)

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2014

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 10, 14, 16, 22 and 24 are for rough work only.

OFFICIAL USE ONLY

Multiple choice section

	Marks	
Pages	Max	Gained
2.0	31	
2-9	31	

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	7			
12	12			
13	5			
15	10			
17	6			
18	8			
19	6			
20	5			
21	3			
23	7			
Total	69			
Check	Total			

¹⁴ C form	ation:			
¹⁴ C deca	y:			
• Comp	olete the following table	2.		
Orbital	Principal quantum number, <i>n</i>	Angular momentum quantum number, <i>l</i>	Number of spherical nodes	Number of planar nodes
4s				0
			1	1
	3			2
It required light is	uires 151 kJ mol ⁻¹ to be needed to break this bo	reak the bond in I ₂ . Wh nd? Give your answer	nat is the minimum in nm.	n wavelength of

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

			2210(
Complete the following	table.		Mai
Molecule	CO_2	SO_2	
Draw a Lewis structure			
Name the molecular geometry			
Does the molecule have a dipole moment? Give a reason for your answer.			
Give the hybridisation of the central atom.			
Comment on the relativ in sulfur dioxide.	e strength of a π-bond in carbon	n dioxide compared to a π -bond	
	water to give a weak acid. Cho s representing the formation of he acid into ions.		

Use one of the molecules/ions from the above equations to illustrate the concept of

resonance.

Page Total:

combustion. Dr	de is a poisonous gas that aw the Lewis structure of the defendent of the theorem and the theorem as appropriate of the theorem as appropriate of the theorem as a possible of the theorem as	at may be obtained from incomplete of carbon monoxide and add the labels e.	Mark 5
rise to the bonds		orbitals (atomic and/or hybridised) that gon monoxide and clearly show which orbitond that results.	
	C	O	
	C	O	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Complete the following table. Make sure you complete the name of the starting material where indicated.

Marks 10

STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
Name:	Br ₂ CCl ₄ solvent	
Name:	1. LiAlH ₄ 2. dilute HCl	
Name:	dilute NaOH	
O NH ₂	6 M NaOH heat	
НО	Na ₂ Cr ₂ O ₇ in dilute sulfuric acid	
Name:	excess CH ₃ CH ₂ OH conc. H ₂ SO ₄ catalyst heat	

• Orlistat (shown below) is a drug for obesity management which acts by inhibiting the absorption of dietary fats. Indicate all stereogenic centres on the structure below.

Marks 6

How many different diastereoisomers are possible for Orlistat?

Select one of the stereogenic centres and draw the isomer with the (R)-configuration.

List the functional groups present in Orlistat.

Is Orlistat likely to be soluble in water? Why?

Marks

8

• Show clearly the reagents you would use to carry out the following chemical conversions. Note that more than one step is required and you should indicate all

• The open chain form of D-mannose has the structure shown.	Marks 6	
CHO		
но—Н		
но н		
Н—ОН		
Н—ОН		
ĊH ₂ OH		
Draw the Haworth projection of β-D-mannopyranose.	_	
	-	
Draw the major organic product of the reaction of D-mannose with the following reagents.		
1. NaBH ₄ 2. H ^{\oplus} / H ₂ O [Ag(NH ₃) ₂] ^{\oplus} / OH ^{\ominus}		
	_	
What is a reducing sugar?		
	1	
Give the Haworth formula of a non-reducing disaccharide that yields D-mannose as the only product on acid hydrolysis.		
	1	

Marks 5

• Alanine (ala) and lysine (lys) are two amino acids with the structures given below as Fischer projections. The pK_a values of the conjugate acid forms of the different functional groups are indicated.

$$pK_{a} = 2.35$$

$$pK_{a} = 2.18$$

$$pK_{a} = 9.87$$

$$H_{2}N \longrightarrow H$$

$$CH_{3}$$

$$ala$$

$$pK_{a} = 8.95$$

$$H_{2}N \longrightarrow H$$

$$(CH_{2})_{4}NH_{2}$$

$$pK_{a} = 10.53$$

Draw the structure of the dipeptide *ala-lys* in its zwitterionic form.

Would you expect the dipeptide to be acidic, neutral or basic? your choice.	Give a brief reason for

Estimate the isoelectric point of the dipeptide.

Answer:

•	• Draw all products from the acid hydrolysis of the following dipeptide, indicating the correct charge state under these conditions.		
	$\begin{array}{c} \begin{array}{c} O \\ H_3N-CH-C-N-CH-CO_2^{\ominus} \\ CH_3 \end{array} \begin{array}{c} H \\ CH_2 \\ CH_2 \\ CONH_2 \end{array}$		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• The following species represent some of the building blocks of RNA.

Marks 7

Is the sugar depicted the α or the β form? Circle the correct answer.

α β

Is the sugar depicted a reducing sugar or a non-reducing sugar? Circle the correct answer.

reducing

non-reducing

Indicate on the above structure the 'anomeric' carbon atom that gives rise to the α or the β form.

Draw the Fischer projection of D-ribose.

Using a selection of the species given, draw a nucleoside and a nucleotide.

nucleoside	nucleotide

CHEM1611 - CHEMISTRY 1A (PHARMACY)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa = 1.013 bar	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$0 ^{\circ}\text{C} = 273 \text{K}$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	$1 \text{ tonne} = 10^3 \text{ kg}$
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 J = 1 kg m^2 s^{-2}$

Decimal fractions

$\begin{array}{ccccc} Fraction & Prefix & Symbol \\ 10^{-3} & milli & m \\ 10^{-6} & micro & \mu \\ 10^{-9} & nano & n \\ 10^{-12} & pico & p \end{array}$

Decimal multiples

Multiple	Prefix	Symbol
10^3	kilo	k
10^6	mega	M
10^{9}	giga	G
10^{12}	tera	T

CHEM1611 - CHEMISTRY 1A (PHARMACY)

June 2014

Standard Reduction Potentials, E°

Standard Reduction Folentials, E	
Reaction	E° / V
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2^+}(aq) + 2e^- \rightarrow Pd(s)$	+0.92
$NO_3^-(aq) + 10H^+(aq) + 8e^- \rightarrow NH_4^+(aq) + 3H_2O$	+0.88
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$BiO^{+}(aq) + 2H^{+}(aq) + 3e^{-} \rightarrow Bi(s) + H_{2}O$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
211 (aq) + 2c	o (ey deminion)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.126
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.126 -0.136
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.126 -0.136 -0.24
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s)	-0.04 -0.126 -0.136 -0.24 -0.28
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s) Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s) Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s) Cr ³⁺ (aq) + 3e ⁻ \rightarrow Cr(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s) Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s) Cr ³⁺ (aq) + 3e ⁻ \rightarrow Cr(s) Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.76
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s) Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s) Cr ³⁺ (aq) + 3e ⁻ \rightarrow Cr(s) Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn(s) 2H ₂ O + 2e ⁻ \rightarrow H ₂ (g) + 2OH ⁻ (aq)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83
Fe ³⁺ (aq) + 3e ⁻ → Fe(s) Pb ²⁺ (aq) + 2e ⁻ → Pb(s) Sn ²⁺ (aq) + 2e ⁻ → Sn(s) Ni ²⁺ (aq) + 2e ⁻ → Ni(s) Co ²⁺ (aq) + 2e ⁻ → Co(s) Cd ²⁺ (aq) + 2e ⁻ → Cd(s) Fe ²⁺ (aq) + 2e ⁻ → Fe(s) Cr ³⁺ (aq) + 3e ⁻ → Cr(s) Zn ²⁺ (aq) + 2e ⁻ → Zn(s) 2H ₂ O + 2e ⁻ → H ₂ (g) + 2OH ⁻ (aq) Cr ²⁺ (aq) + 2e ⁻ → Cr(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s) Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s) Cr ³⁺ (aq) + 3e ⁻ \rightarrow Cr(s) Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn(s) 2H ₂ O + 2e ⁻ \rightarrow H ₂ (g) + 2OH ⁻ (aq) Cr ²⁺ (aq) + 2e ⁻ \rightarrow Cr(s) Al ³⁺ (aq) + 3e ⁻ \rightarrow Al(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
Fe ³⁺ (aq) + 3e ⁻ → Fe(s) Pb ²⁺ (aq) + 2e ⁻ → Pb(s) Sn ²⁺ (aq) + 2e ⁻ → Sn(s) Ni ²⁺ (aq) + 2e ⁻ → Ni(s) Co ²⁺ (aq) + 2e ⁻ → Co(s) Cd ²⁺ (aq) + 2e ⁻ → Cd(s) Fe ²⁺ (aq) + 2e ⁻ → Fe(s) Cr ³⁺ (aq) + 3e ⁻ → Cr(s) Zn ²⁺ (aq) + 2e ⁻ → Zn(s) 2H ₂ O + 2e ⁻ → H ₂ (g) + 2OH ⁻ (aq) Cr ²⁺ (aq) + 2e ⁻ → Cr(s) Al ³⁺ (aq) + 3e ⁻ → Al(s) Sc ³⁺ (aq) + 3e ⁻ → Sc(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s) Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s) Cr ³⁺ (aq) + 3e ⁻ \rightarrow Cr(s) Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn(s) 2H ₂ O + 2e ⁻ \rightarrow H ₂ (g) + 2OH ⁻ (aq) Cr ²⁺ (aq) + 2e ⁻ \rightarrow Cr(s) Al ³⁺ (aq) + 3e ⁻ \rightarrow Al(s) Sc ³⁺ (aq) + 3e ⁻ \rightarrow Sc(s) Mg ²⁺ (aq) + 2e ⁻ \rightarrow Mg(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71 -2.87
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Co ²⁺ (aq) + 2e ⁻ \rightarrow Co(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s) Cr ³⁺ (aq) + 3e ⁻ \rightarrow Cr(s) Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn(s) 2H ₂ O + 2e ⁻ \rightarrow H ₂ (g) + 2OH ⁻ (aq) Cr ²⁺ (aq) + 2e ⁻ \rightarrow Cr(s) Al ³⁺ (aq) + 3e ⁻ \rightarrow Al(s) Sc ³⁺ (aq) + 3e ⁻ \rightarrow Sc(s) Mg ²⁺ (aq) + 2e ⁻ \rightarrow Mg(s) Na ⁺ (aq) + e ⁻ \rightarrow Na(s)	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71

CHEM1611 - CHEMISTRY 1A (PHARMACY) Useful formulas

Quantum Chemistry	Electrochemistry									
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$									
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$									
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$									
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$									
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{1.00} \log Q \text{ (at 25 °C)}$									
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	n logg (m 23 °C)									
Acids and Bases	Gas Laws									
$pH = -log[H^+]$	PV = nRT									
$pK_{w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$									
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$									
$pH = pK_a + \log\{[A^-] / [HA]\}$										
Radioactivity	Kinetics									
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$									
$A = \lambda N$	$k = Ae^{-Ea/RT}$									
$\ln(N_0/N_{\rm t}) = \lambda t$	$ ln[A] = ln[A]_{o} - kt $									
14 C age = 8033 $\ln(A_0/A_t)$ years	$ \ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) $									
Colligative Properties & Solutions	Thermodynamics & Equilibrium									
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$									
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$									
c = kp	$\Delta G^{\circ} = -RT \ln K$									
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ} S^{\circ} = R \ln K$									
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$									
Miscellaneous	Mathematics									
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$									
$A = \varepsilon c l$	ln x = 2.303 log x									
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2									
$\frac{L}{4\pi\varepsilon_0 r}$	Surface area of sphere = $4\pi r^2$									

2216(b) June 2014 CHEW1911

9
FLORING
F
F
19.00
17
17
CHICAGNS
CI
35.45
35
35
35
BROWNE
Br
79.90
53
10DING
1
126.90
85
ASTATING

2 He He 4.003 10 Ne 20.18 Ar 39.95 36 SERVICE SALES SA

LANTHANOIDS

ACTINOIDS

57 **LANTILANUM La**138.91
89
ACTINUM **Ac**[227.0]

58
CERLUM
Ce
140.12
90
THORRUM
Th
232.04

59 **Pr Pr**140.91
91
91
PROTACTINUM **Pa**[231.0]

60
NGODYNIUM
Nd
144.24
92
URANIUM
U
238.03

61
PROMETHIUM
PM
[144.9]
93
93
NEPTUNUM
Np
[237.0]

62
SAMARIUM
Sm
150.4
94
PLUTONIUM
Pu
[239.1]

63 Europium Eu 151.96 95 Americium Am

64
GABOLINIUM
Gd
157.25
96
CURIUM
Cm

65 **Tb**158.93
97
8ERKELLIUM **Bk**[247.1]

66
DYSPROSIUM
Dy
162.50
98
CALIFORNIUM
Cf
[252.1]

67 **H0**164.93
99
EINSTEINIUM
ES
[252.1]

68
ERBIUM
Er
167.26
100
FERMIUM
FERMIUM
FERMIUM
[257.1]

69
THULIUM
Tm
168.93
101
MENDELEVIUM
Md
[256.1]

70 **YTERRIUM Yb**173.04
102
NOBELIUM **No**[259.1]

71 Lu 174.97 103 LAWRENCIUM Lr [260.1]

-							-			-										_				
		89-103							39 YTTRIUM														သ	
[263]	Rf	104	178.49	\mathbf{Hf}	HAFNIUM	72	91.22	\mathbf{Zr}	40 zirconium	47.88	Ti	ATTANIUM 7.7	2										4	
[268]	Db	105	180.95	Ta	TANTALUM	73	92.91	Zb	41	50.94	V	VANIDANA V	22										Ŋ	
[271]	Sg	106 SEABORGIUM	183.85	¥	TUNGSTEN	74	95.94	M_0	42	52.00	\mathbf{Cr}	24 снромим	2										6	
[274]	Bh	107	186.2	Re	RHENIUM	75	[98.91]	Tc	43	54.94	Mn	MANGANESE C	35										7	PER
[270]	Hs	108	190.2	o _s	OSMIUM	76	101.07	Ru	44 RUTHENIUM	55.85	Fe	LRON	26										∞	PERIODIC
[278]	Mt	109	192.22	Ir	IRIDIUM	77	102.91	Rh	45	58.93	Co	COBALT	77										9	TABLE OF THE ELEMENTS
[281]	Ds	110	195.09	Pt	PLATINUM	78	106.4	Pd	46 PALLADIUM	58.69	Z	NICKEL 2	30										10	E OF
[281]	Rg	111	196.97	Au	GOLD	79	107.87	Ag	47 SILVER	63.55	Cu	COPPER	30										11	THE
[285]	Cn	112	200.59	$_{ m Hg}$	MERCURY	08	112.40	Cd	48	65.39	Zn	ZINC	30										12	ELEM
			204.37	II	MALTITUM	81	114.82	In	49	69.72	Ga	GALLIUM	26.98	A	ALUMINIUM	13	10.81	В	BORON	ì			13	ENTS
[289]	Ξ	114	207.2	Pb	LEAD	82	118.69	Sn	50	72.59	Ge	32 GERMANIUM	28.09	30 00	Z : SILICON	14	12.01	C	6 CARBON	`			14	
			208.98	Bi	BISMUTH	83	121.75	Sb	51	74.92	As	ARSENIC	30.97	30.07	PHOSPHORUS	15	14.01	Z	NITROGEN	1			15	
[293]	$L_{\mathbf{V}}$	116	[210.0]	Po	POLONIUM	84	127.60	Te	52	78.96	Se	MDINATES 4	32.07	30	Ω	16	16.00	0	OXYGEN 8	0			16	
_			-				<u> </u>			+-							+			-1				

17

18

4
BERVLION
Be 9.012
12
MAGE 24.31
20
CALCIUM
CA
40.08
38
87.62
56
BARIUM
Ba
137.34
88
RABIUM
Ra
1226.01